Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
1.
Front Immunol ; 13: 982746, 2022.
Article in English | MEDLINE | ID: covidwho-2198859

ABSTRACT

Background: Even during long-term combination antiretroviral therapy (cART), people living with HIV (PLHIV) have a dysregulated immune system, characterized by persistent immune activation, accelerated immune ageing and increased risk of non-AIDS comorbidities. A multi-omics approach is applied to a large cohort of PLHIV to understand pathways underlying these dysregulations in order to identify new biomarkers and novel genetically validated therapeutic drugs targets. Methods: The 2000HIV study is a prospective longitudinal cohort study of PLHIV on cART. In addition, untreated HIV spontaneous controllers were recruited. In-depth multi-omics characterization will be performed, including genomics, epigenomics, transcriptomics, proteomics, metabolomics and metagenomics, functional immunological assays and extensive immunophenotyping. Furthermore, the latent viral reservoir will be assessed through cell associated HIV-1 RNA and DNA, and full-length individual proviral sequencing on a subset. Clinical measurements include an ECG, carotid intima-media thickness and plaque measurement, hepatic steatosis and fibrosis measurement as well as psychological symptoms and recreational drug questionnaires. Additionally, considering the developing pandemic, COVID-19 history and vaccination was recorded. Participants return for a two-year follow-up visit. The 2000HIV study consists of a discovery and validation cohort collected at separate sites to immediately validate any finding in an independent cohort. Results: Overall, 1895 PLHIV from four sites were included for analysis, 1559 in the discovery and 336 in the validation cohort. The study population was representative of a Western European HIV population, including 288 (15.2%) cis-women, 463 (24.4%) non-whites, and 1360 (71.8%) MSM (Men who have Sex with Men). Extreme phenotypes included 114 spontaneous controllers, 81 rapid progressors and 162 immunological non-responders. According to the Framingham score 321 (16.9%) had a cardiovascular risk of >20% in the next 10 years. COVID-19 infection was documented in 234 (12.3%) participants and 474 (25.0%) individuals had received a COVID-19 vaccine. Conclusion: The 2000HIV study established a cohort of 1895 PLHIV that employs multi-omics to discover new biological pathways and biomarkers to unravel non-AIDS comorbidities, extreme phenotypes and the latent viral reservoir that impact the health of PLHIV. The ultimate goal is to contribute to a more personalized approach to the best standard of care and a potential cure for PLHIV.


Subject(s)
COVID-19 , HIV Infections , Sexual and Gender Minorities , Male , Humans , Female , HIV Infections/drug therapy , HIV Infections/epidemiology , Homosexuality, Male , Prospective Studies , COVID-19 Vaccines/therapeutic use , Carotid Intima-Media Thickness , Longitudinal Studies , Multiomics
2.
Front Immunol ; 13: 1027122, 2022.
Article in English | MEDLINE | ID: covidwho-2142033

ABSTRACT

The ongoing Coronavirus Disease 2019 (COVID-19) pandemic is caused by the highly infectious Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2). There is an urgent need for biomarkers that will help in better stratification of patients and contribute to personalized treatments. We performed targeted proteomics using the Olink platform and systematically investigated protein concentrations in 350 hospitalized COVID-19 patients, 186 post-COVID-19 individuals, and 61 healthy individuals from 3 independent cohorts. Results revealed a signature of acute SARS-CoV-2 infection, which is represented by inflammatory biomarkers, chemokines and complement-related factors. Furthermore, the circulating proteome is still significantly affected in post-COVID-19 samples several weeks after infection. Post-COVID-19 individuals are characterized by upregulation of mediators of the tumor necrosis (TNF)-α signaling pathways and proteins related to transforming growth factor (TGF)-ß. In addition, the circulating proteome is able to differentiate between patients with different COVID-19 disease severities, and is associated with the time after infection. These results provide important insights into changes induced by SARS-CoV-2 infection at the proteomic level by integrating several cohorts to obtain a large disease spectrum, including variation in disease severity and time after infection. These findings could guide the development of host-directed therapy in COVID-19.


Subject(s)
COVID-19 , Proteomics , Humans , Proteome , SARS-CoV-2 , Biomarkers
3.
Thromb Haemost ; 122(12): 2001-2010, 2022 Dec.
Article in English | MEDLINE | ID: covidwho-2062344

ABSTRACT

BACKGROUND: Coronavirus disease 2019 (COVID-19) is often associated with mild thrombocytopenia and increased platelet reactivity. OBJECTIVE: The aim of the current study was to investigate the adenosine triphosphate (ATP) release kinetics of platelets in hospitalized SARS-CoV-2-infected patients. METHODS: We studied time-dependent platelet activation in whole blood by monitoring the ATP release kinetics upon stimulation with a PAR1 receptor agonist in 41 hospitalized critically ill COVID-19 patients, 47 hospitalized noncritically ill COVID-19 patients, and 30 healthy controls. RESULTS: Our study demonstrated that platelets of critically ill COVID-19 patients were hyper-responsive with a shorter platelet response time (PRT) and a reduced platelet granule release capacity (GRC), probably due to chronic activation. The median PRT of COVID-19 patients admitted to the critical care unit was 10 and 7 seconds shorter than the median PRT in healthy controls and noncritical COVID-19 patients, respectively. Both PRT and GRC were also associated with D-dimer (Spearman r [r s] = -0.51, p < 0.0001 and r s = -0.23, p < 0.05), C-reactive protein (CRP) (r s = -0.59, p < 0.0001 and r s = -0.41, p < 0.01), and neutrophil-to-lymphocyte ratio (NLR) (r s = -0.42, p < 0.0001 and r s = -0.26, p < 0.05). Moreover, an increased PRT and a reduced GRC were associated with an increased mortality (odds ratio [OR]: 18.8, 95% confidence interval [CI]: 6.5-62.8, p < 0.0001 and OR: 4.0; 95% CI: 1.6-10.4, p < 0.01). These relationships remained significant after adjustment for age, sex, D-dimer, CRP, and NLR. CONCLUSION: Using an accessible agonist-induced platelet granule ATP release assay, we show that platelet hyper-responsiveness and reduced platelet GRC in COVID-19 patients were associated with critical illness and mortality.


Subject(s)
COVID-19 , Thrombocytopenia , Humans , SARS-CoV-2 , Blood Platelets/metabolism , Critical Illness , C-Reactive Protein/metabolism , Adenosine Triphosphate/metabolism , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL